solar

Direct forms of solar energy

Concentration solar power

solar

Concentration solar power

solar concentration

solar

parabolic dish collector

Reflector

parabolic trough collector

power tower

C

power tower with storage

heat-to-power efficiency

parabolic trough collector

 $X = \frac{d_a}{d_i}$

Optical losses:

- Alignment errors
- Reflections

receiver

solar

Durable glass-to-metal seal material combination with matching coefficients of thermal expansion **AR-coated glass tube** ensures high transmittance and high abrasion resistance

> New absorber coating achieves emittance $\leq 10\%$ and absorptance $\geq 95\%$

Vacuum insulation minimized heat conduction losses

Improved bellow design *increases the aperture length to more than 96%*

collector efficiency

solar

RENDIMENTO DO COLETOR

 $A_a G_0$

 $\eta = 1 - \frac{\varepsilon \sigma T_H^4}{X G_0}$

 \dot{Q}_u

+ thermal losses+ optical losses

 $\varepsilon \sigma A_i T_H^4$

- Decrease the surface emissivity
- Increase the concentration factor

system efficiency

CSP power plants

solar

Ivanpah - Mojave Desert, California, USA, 2014 three power towers 392 MW, Area: 14.2 km²

CSP power plants

solar

Solaben - Logrosán, Spain, 2013 Parabolic trough collectors 200 MW, Collectors area: 12 km²

Martin artic

CSP power capacity

Technology	Typical Characteristics	Capital Costs (USD/kW)	Typical Energy Costs (LCOE – U.S. cents/kWh)
Power Generation			
Concentrating solar thermal power (CSP)	Types: parabolic trough, Fresnel, tower, dish Plant size: 50–250 MW (trough); 20–250 MW (tower); 10–100 MW (Fresnel) Capacity factor: 20–40% (no storage); 35–75% (with storage)	Trough, no storage: 4,000–7,300 (OECD); 3,100–4,050 (non-OECD) Trough, 6 hours storage: 7,100–9,800 Tower, 6–15 hours storage: 6,300–10,500	Trough and Fresnel: 19–38 (no storage); 17–37 (6 h. storage) Tower: 20–29 (6–7 hours storage); 12–15 (12–15 hours storage)

(LCOE) Levelized cost of energy

Table 2.15	Comparison of	the current	t performance	and current	and projected
(2020–2025)	cost of differen	nt solar ther	rmal technolog	gies for gener	ating electricity

Attribute	Technology			
	Parabolic trough	Parabolic dish	Central tower	
Powerpla	nt characteristics			
Peak efficiency (%)	21	29	23	
Net annual efficiency (%)	13	15	13	
Capacity factor without storage (%)	24	25	24	
Capacity factor with 6 hours storage (%)	42–48	35–60	35–60	
Current investment cost (\in /kW)	3500-6000	10,000-12,000	3500-4500	
Future investment cost (\$/kW)	2000-3000	2000-3000	2000-3000	
Current electricity cost (\in /kWh)	0.13-0.23	0.27-0.32	0.17 - 0.22	
Future electricity cost (\$/kWh)	0.05-0.08	0.05-0.08	0.05-0.08	
Storage sys	tem characteristics			
Medium	Synthetic oil	Battery	Molten salt	
Cost (\$/kW heat)	200	30	500-800	
Lifetime (years)	30	5–10	30	
Round-trip efficiency	95	76	99	

	Costs	Efficiency	Advantage	Disadvantage
Parabolic trough	12–20 cents/kWh now, 5–10 cents kWh future	15–20%, 42–48% capacity factor with six-hour storage	Large scale, lots of demo projects, some storage	Thermal storage more difficult than for other thermal methods
Parabolic dish	€10,000–14,000/kW, eventually \$2000–3000/kW (8–24 cents/kWh)	20–28%	Suitable for isolated villages, low infrastructure costs, quick start	Expensive at present, limited heat storage ability
Central receiver	18–32 cents/kWh today	10–15%	Most amenable to 24-hour electricity	Each mirror must individually track the sun

BIBLIOGRAFIA

Ehrlich, R. Renewable Energy, a first course **Solar Thermal** (10.12)

Boyle, G. Renewable Energy, Power for Sustainable Future **Solar Thermal Energy** (2.9, 2.10)

Os colectores solares planos ...

- (a) têm perdas térmicas inferiores aos coletores de tubo de vácuo.
- (b) têm perdas óticas inferiores aos coletores de tubo de vácuo.
- (c) têm sempre um rendimento inferior aos coletores de tubo de vácuo.
- (d) Nenhuma das frases anteriores.

Qual dos usos **não** é adequado para o produto final que resulta de um colector solar plano?

- (a) Aquecimento ambiente.
- (b) Aquecimento de águas para uso doméstico.
- (c) Aquecimento de água de piscinas.
- (d) Produção de electricidade.

A melhor inclinação para um coletor solar térmico orientado a sul para optimizar a produção anual de água quente depende...

- (a) da latitude do local.
- (b) da longitude do local.
- (c) da diferença média entre a hora solar e a hora legal
- (d) da declinação média ao longo do ano.

Os colectores solares planos sem vidro ...

- (a) têm sempre um rendimento superior aos coletores solares planos com vidro.
- (b) têm perdas térmicas inferiores aos coletores solares planos com vidro.
- (c) têm perdas óticas superiores aos coletores solares planos com vidro.
- (d) Nenhuma das frases anteriores.

Os colectores solares de tubo de vácuo ...

- (a) têm sempre um rendimento superior aos coletores solares planos.
- (b) têm perdas térmicas superiores aos coletores solares planos.
- (c) têm perdas óticas superiores aos coletores solares planos.
- (d) Nenhuma das frases anteriores.

solutions

1. b 2. d 3. a 4. d 5. c

Um colector solar térmico plano tem um rendimento óptico de 80% e apenas um parâmetro de perdas que toma o valor de 4 $W/(m^2K)$.

- Determinar a temperatura de saturação quando a temperatura ambiente é de 15°C e a radiação 900 W/m².
- Explicar o que o distingue de um colector solar térmico de vácuo. Qual das tecnologias tem um rendimento máximo mais elevado? E um rendimento médio mais elevado? Justificar as respostas.

Pretende-se optimizar a instalação de colectores solares térmicos planos para a produção de água quente numa habitação de férias que é fundamentalmente usada durante o verão. A habitação encontra-se localizada a uma latitude de 38°.

- Calcular o posicionamento ótimo dos colectores azimute e inclinação sabendo que não existem obstruções significativas e tomando como referência o dia de hoje (dia Juliano 190). (2 valores)
- 2. Indicar as principais causas para a perda de rendimento de um colector solar térmico plano. (1 valor)

